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Introduction



Background and Motivation

* Collaborative research between UNM and LANL

— Phase | — Quasi-static Brazilian test with concurrent permeability
measurements.

- Phase ll — Quasi-static confined Brazilian test with concurrent
permeability.

— Phase lll — Dynamic testing.
» Development of HOSS (Hybrid Optimization Software Suite)
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Failure curve in principal stress (04 -03) space. The confined extensionregionis
shown as shaded area. The stress paths of different strength tests are shown,
including the confined Brazilian test. Figure modified from Patel and Martin, 2018.



Objectives

» Understand failure conditions of rock in the confined extension region

« Understand the conditions under which microcracks and permeability
develop in the confined extension region

« Compare and analyze numerical simulations with experimental results



Materials and Methods



Materials

» Royal Red Sandstone — quarried from
Kanab, Utah
— Small grain size (20-100 microns)
— Homogenous
— Relatively weak sandstone

» Confined Flattened Brazilian Tests

« Sample Dimensions
— 50.8 mm diameter
- 25.4 mm thickness
- 1.0 mm flattened
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Sample Preparation
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Schematic of the sample jacketing construction modified from Boyce (2019).



Sample Preparation
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Experimental Setup
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Schematic of the permeability and loading system inside the pressure vessel,
modified from Boyce (2019).



Experimental Setup

TS

Geometric representation of a confined Brazilian test (left) and numerical simulation
results observed using Paraview (right).
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Testing Matrix

Test Type Sample #s Confining Pressure (MPa)

2.76 8.27 13.79 20.68 27.58

IO FETE A-1toA-24 4(0) 4(3) 7(5) 4(3) 3(2) 2(2)

(Includes Perm.)

Porosityand
Permeability pre-
failure

¢
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Strength and Failure Results



Force - Displacement
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Principal Stresses at Failure
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Principal Stresses at Failure
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Mogi-Coulomb Failure Criterion
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Numerical Results using HOSS
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Numerical vs. Experimental Stresses
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Numerical vs. Experimental Stresses
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Permeability and Fracture
Evolution Results
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Force (N)

Force and Permeability vs. Time
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Permeability Thresholds
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Permeability vs. Confining Stress
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Permeability Thresholds in Principal Stress Space
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Unloading and Reloading Cycles
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Unloading and Reloading Cycles
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Observation of Fractures




Observation of Fractures
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Observation of Fractures
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Observation of Fractures
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Conclusions
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Conclusions

» Strength and Failure
— Strength was a strong function of the intermediate principal stress
- The failure data is well fit to Mogi-Coulomb strength criteria
— A transition from tensile to shear failure was observed, rather than a tension cutoff

» Permeability and Fracture Evolution

— Initial permeability and subsequent increases in permeability is highly dependent on
the intermediate principal stress

— Stress conditions coincident with permeability increases are also frictional/shear in
nature

— During unloading and reloading cycles, reactivation of crack networks occur due to
shear stresses

* Numerical Modeling Comparisons
— Consistently and accurately replicated strength and failure behavior
— Inconclusive observations from fracture network development

<



Future Work

» Development of a failure criterion
applicable to the tensile-shear
transition region for this sandstone

« Expanding this testing to other
materials

« Comparing damage with the increases
in permeability using acoustic
emissions

« Additional numerical simulation
calibration with HOSS to determine -
causes of inconsistencies in fracture 5 Jo
network geometry _ : o
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